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The Continuum Interpretation for 
Fracture and Adhesion* 

M. L. WILLIAMS, College of Engineering, University of Utah, Salt Lake 
City,  Utah 8411.9 

synopsis 
From the viewpoint of continuum mechanics, and particularly the energy concept of 

fracture, adhesive and cohesive failures are similar. The essential difference involves 
the interpretation of the energy required to create new (adhesive or cohesive) surface area. 
A simple pressurized disk test is described for measuring the adhesive value for a bonded 
elastomer, and an application to a debonding problem in engineering design is given. 

Introduction 

A t  the Fifth U. S. National Congress of Applied Mechanics, the author 
discussed' an essential similarity between certain problems of adhesion and 
fracture. Considering, for example, the elastic analysis of a thin sheet in 
the neighborhood of a sharp geometric discontinuity such as a wedge point 
or crack tip, it is well known that a singularity in stress exists at  the point of 
discontinuity and depends upon the local boundary conditions, loading, and 
properties of the materiaL2-5 In the case of a central finite length crack in 
an infinite sheet subjected to tension, the classic Griffith problem gives a 
local stress variation which is proportional to the inverse square root of the 
distance from the crack tip. 

Inasmuch as this (mathematically) infinite stress exists here for even the 
smallest loading, it appears that instantaneous fracture would occur and 
that stress analysis would not be useful for predicting a finite stress which 
the sheet could withstand before fracture. The essential contribution of 
GrifXthl6 however, was to develop an overall energy balance, which incor- 
porated the integrable stress singularity, by equating the reduction in strain 
energy to the energy required to create new surface. The result was the 
prediction of a finite applied tensile stress, ucr, needed to initiate fracture, 
namely, uoor = Z/2Eyc/7ra, in which E and yc are the Young's modulus and 
energy to create new fracture surface, respectively, and 2a is the finite 
length of the crack in the thin sheet. It is apparent, therefore that the use 
of the integrated energy balance neatly circumvented the question of how 
infinite the infinite stress need become before fracture. It furthermore 

* Based upon a lecture delivered at the Wayne State University, Polymer Conference 
Series, Detroit, Michigan, May 14,1968. 
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suggests the way in which other problems in stress analysis having stress 
singularities can be attacked in order to predict a finite stress at  failure 
notwithstanding an infinite stress at  the origin of the fracture initiation. 

The character of elastic stress singularities to be expected for various 
geometric discontinuities was investigated by Williams2e3 and later applied 
to the specific situation of the interface between dissimilar media.? In this 
case too, when a crack existed along the line of demarcation of the two 
materials, the stress singularity was likewise singular, although not neces- 
sarily solely of the r-”* type. It subsequently became attractive to several 
workers in the field to inquire whether the same approach as Griffith used 
could be applied to predict the stress required to further separate or fracture 
the (adhesively bonded) interface between two different media, again not- 
withstanding the predicted existence of an infinite stress at  the crack paint 
for even small applied loads. 

In the 
Griffith problem the finite length of the central crack 2a, lies, say, along the 
x axis, with the upper and lower half planes occupied by the same material; 
in the second problem, the materials above and below the x axis are different. 
For the purposes of discussion, we shall assume the material in the lower 
half plane to be infinitely rigid (e.g., glass) with respect to that in the upper 
half plane (e.g., rubber), and assume perfect adhesion over 1x1 > a. The 
stresses at the crack ends, 1x1 = a, are both singular. In the first case the 
Grif€ith critical stress is the classic example of cohesive fracture and well 
known; in the second, the example of perfect adhesive failure is not. 

Before looking into the second problem in more detail, it is pertinent to 
comment upon the distinction between the mechanics and chemistry view- 
points. As structured above, the mechanics approach is straightforward 
and consists of two parts: (1) conduct the stress analysis for an edge- 
bonded specimen having a central finite crack a t  the interface with a rigid 
boundary, and (2) express the incremental new surface energy generated as 
the crack extends. This latter part however requires interpretation.* In 
the cohesive fracture problem with the same material on both sides of the 
extending crack Griffith used A S  = 4 y P a  as the incremental energy per unit 
thickness. The factor four arises because both ends of the crack are as- 
sumed to extend equally, and each end creates two new surfaces, one above 
and one below the crack. The specific energy yo has been subscripted to 
denote the value associated with cohesive failure. For adhesive failure, it 
would be appropriate, although not necessarily unique, to write A S  = 2y,Aa 

The phenomenological similarity in the two cases becomes clear. 

* It should be clear that a continuum mechanics analysis does not, of itself, differen- 
tiate between a cohesive or adhesive mechanism of failure. The distinction lies in the 
behavior implied by using a particular one of the respective energies to create the new 
surface, namely yo (cohesive) or ys (adhesive). Furthermore there appears to be no 
direct association between the critical surface tension and the continuum mechanics 
analysis of the unstable infinitesimal deformation of a solid, although for special cases the 
critical surface stress to cause a spherical flaw to become unstable has been deduced by 
Williams and Schapery.8.s 
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to denote that only two new free surfaces are formed in the elastic material. 
While this leaves open to surface chemists the question of any quantitative 
relation between y. and yo, as long as y. is a fundamental material constant, 
it can be used subsequently for predicting adhesive failure in a different 
geometric or loading configuration. Suppressing further comment upon 
this point until later, let us proceed to a detailed consideration of perfect 
adhesion between elastic and rigid materials. 

The Elastic Rigid-Adhesive Problem 

The first distinction to be drawn is that between problems for which exact 
or approximate solutions are available. In the first category we find two 
useful geometric configurations; (1) the end-bonded half plane with an 
interface finite crack of length 2a, and (2) the end-bonded circular rod con- 
taining an interface penny shaped crack of radius 2a. In both cases the 
discontinuity is located along the bond to the rigid boundary. The width or 
external rod diameter is assumed infinitely large. For these geometries of 
immediate concern (Fig. l), analytical solutions for the case of uniform 
internal pressure in the crack are already available. Without repro- 
ducing the analysis* but merely equating the change in internal strain 
energy with respect to the increment in flaw enlargement, Aa, to the change 
in energy to create new adhesive surface, AS1 = (2y.b)Aa or AS2 = (2~ay,)- 
Aa for problems (1) or (2) ,  respectively, one easily deduces the results in 
Table I. 

In  principle then, either of the configurations in Table I could be used to 
determine y. and then verified by checking the results obtained in the other. 
As a practical matter there are the usual experimental difficulties, such as 
how one introduces uniform pressure into the crack without leakage, or how 
to control, repeatedly, the thickness of the adhesive coating in the various 
configurations. For these reasons, and to ascertain whether indeed there is 
a unique value of ya independent of configuration, it is useful to have as 
wide a range of test conditions as possib1e.t In the earlier paper' it was 

Fig. 1. Cross section geometry of a rigid-elastic bond in a sheet or rod specimen. The 
region 1x1 <a may be subjected to uniform pressure PO. 

* The referenced results have been specialized to the case of an incompressible elastic 
material ( u  = I/*) bonded to a rigid support, in which case the oscillating character of the 
stress singularity7 disappears and the case gives essentially the same behavior as for the 
homogeneous problem. 

t For example, one can easily obtain similar results for the related case of a concen- 
trated central splitting force normal to the interface. 
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indicated that modern computational techniques are sufficiently accurate to 
determine the energy gradient with crack size with sufficient accuracy, even 
in reasonably complicated three-dimensional problems. One could proceed 
to construct therefore almost any experimentally desired test configuration, 
although at some expense in complicating the stress analysis. 

TABLE I 
CRITICAL IMPOSED PRESSURE 

Configuration Po 
End-bonded half-plane with line crack 

End-bonded rod with penny crack 

Returning to one of the initial points, however, it may also prove useful to 
inquire into the potential accuracy of approximate solutions for easily 
tested experimental configurations. One of the commonest ones used in 
adhesion evaluation is the strip peel test (Fig. 2), which has several varia- 
tions as discussed and reviewed, for example, by Bikerman'* and Kaelble.13 
While variations of this test are attractive especially for ranking purposes, 
its analysis is not thought to be completely satisfactory for our present 
purposes, although in principle it could be made so even if one resorted to 
numerical computations. Another example developed for cohesive failure 
is the cantilever split beam proposed by Obreimoff" and subsequently 
modified by Gilrnanl6 and Berry16 for evaluating the cohesive fracture energy 
in thin sheets like mica (Fig. 3). In addition, the cantilever beam and the 

Fig. 2. External forces acting on the flexible member. 

F 

i 

F 
Fig. 3. Double-csntilever cleavage epecimen.ls 
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b-2a-i 

Fig. 4. Circular bonded plate with a concentrated 10ad.l~ 

point-loaded circular plate (Fig. 4) tests proposed by Malyshev and Salga- 
nik17 seem very attractive to include in a family of practical tests for deter- 
mining the adhesive energy. As a final configuration forming the series of 
possible geometries which can be studied, it should be noted that the pre- 
vious exact solutions for the edge-bonded plane strain specimen and the rod 
specimen may be viewed as a limit situation as the beam or plate thickness 
h becomes infinite. 

On viewing all the solutions in this context, both exact and approximate, 
and with due consideration of experimental convenience, it is proposed that 
Malyshev and Salganik’s analysis can be supplemented by a pressurized 
bubble test (Fig. 4, except with uniform pressure, Pc, instead of point 
loading). Conceptually, this type of test is also not new, although perhaps 
some improvements in the analytical expression of the results can be 
achieved. Dannenberg,18 for example, has discussed the measurement of 
adhesion by a blister method, which is essentially a pressurized bubble. 
In that case the work of adhesion was deduced from measurements of the 
work input, pdV,  of the pressurizing fluid for application to the adhesion of 
paint. It may be noted, incidentally, that the consecutive detachment of 
the coating which he notes experimentally, is possibly related to the same 
“stick-slip” phenomenon frequently observed in cohesive fracture of 
polymers. 

From the principle of energy conservation, one may write that the work 
done by the applied pressure moving through the virtuaI displacement must 
be balanced by the change in internal strain energy plus the change in the 
energy to create any new surface. Inasmuch as the change in internal 
energy is one-half the applied work for a linear load-deflection relation by 
Clapeyron’s theorem,1p one has 

From plate theory, one finds that the deflection of a uniformly loaded 
clamped plate of radius a is given byao 

w(r) = (1/64) (poll)) (a2 - r2)2 (2) 

where D = Eha/12(1 - vz) is the plate flexural rigidity, so that the energy 
balance yields 
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I 35F+h 
2.5 - I 

I 
I Axially Symmrlric -(Penny Shope)-5* 

2.0 - 

I I 
1 2 

h /a 
Fig. 5. Asymptotic critical pressures for rigid-elastic (incompressible) adhesive end- 

The circular or slit flaw size, 2a, bonds in thin sheets (plane stress) or circular rods. 
is small compared to the width or diameter of the specimen. 

which can be compared to the rod result (Table I) of 

The comparative dependency upon h/a is to be noted. 
Several of the pertinent cases have been collected in Table I1 for use in 

experimental studies. Using the pressurized crack configuration for ex- 
ample, one can construct the curve in Figure 5 which shows the predicted 
limit results for bonded rods or (plane stress) plates. By establishing these 
limits it is possible to bracket, with engineering accuracy, the adhesive 
energy value ya for a wide range of experimental configurations without 
having to compute explicitly the difficult transition cases. * 

As a concluding point before discussing some representative test results, 
it should be emphasized that the analyses of all the thin disk configurations 
are approximate because only beam and plate theory has been used. Actu- 
ally (mathematically) infinite stresses exist at the bonded end of the beam or 
clamped edge of the plate at  the specimen-bond interface. These are not 
included in the approximate analysis, and thus contribute to the potential 
error in adhesive energy determinations. Its degree must be ascertained. 
In the meantime, it is reasonable to inquire as to the degree of accuracy 
obtained with the simple analyses. 

One may note in passing, however, that the experimental solutionz3 
achieved by Broutman and McGarry for adhesive work measurements 

* If warranted, these results can be extended to very thin plates or membranes for 
which the load-deflection relations are nonliinear.z1~2z 
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TABLE I1 
Selected Critical Loadings for Adhesive Failure to  a Rigid Medium 

Geometry Critical loading Reference 

Axially symmetric 

E Y ~  
p,2 e ~ - Bonded rod with small penny 

shaped crack; uniform pressure 2(1 - 9)  a 
Bonded disk with small penny 

shaped crack; uniform pressure P o 2  = ____ 3(1 - 
85T2 

p,2 = ~ Eh3ya 3(1 - 9)  
Bonded disk with small penny 

shaped crack; central 
concentrated load, P 

Thin sheets (plane stress”) 

Eb4h3y. l5 p,z = - End-loaded cantilever 
(length, a; width, b)  6a2 

Uniformly loaded cantilever - 2 ~ h 3 ~ .  
p0.Z = - (length, a; width, b)  3a4 

Centrally loaded, cantilever on - 8Ebahay. Pc,Z = ___ both ends (length, 2a; width, b )  

Uniformly loaded, cantilever on - 3Eh3ya 
pcr2 = - 

Edgebonded thin sheet. 8 PCr2 = 21rEyaa 

3a2 

both ends (length, 2a; width, b) 2a4 

(crack length, 2a); central 
concentrated load P (lb/in)b 

2a); uniform pressure loadingb u a  
2 E Y ~  pc*2 = - - Edge-bonded sheet (crack length, 8 

11 

eq. (4) 

17 

17 

- 

- 

10 

10 

a Plane strain obtained by replacing E by E / ( 1  - 9)  
b Exact for plane strain and incompressible elastic medium. Estimate only for plane 

stress, due to oscillating type singularity; exact analysis follows from ref. 10. 

might be adopted. The double cantilever-beam test, which they used, 
leads theoretically to a load-deflection relation containing the beam (crack) 
length raised to the third power when elementary beam theory is used. By 
actually plotting deflection per unit force versus crack length they obtained 
an exponent from their tests which was a constant} somewhat less than 
three, over a substantial range of the crack length. If this approach was 
applied to the pressurized disk by plotting experimental results of deflection 
versus pressure as a function of debonding radius, perhaps some of the un- 
certainty due to using Kirchhoff -Love plate theory could be eliminated. 

Experimental Results 
Malyshev and Salganik” have conducted experiments using a splibbeam, 

end-loaded cantilever, and a point-loaded circular plate (Fig. 4) using a 
steel-Plexiglas combination. For the circular plate configuration} they 
obtained the criticality relation (Table 11) as 
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LOAD, S 
(Kg1 

RADIUS, a, 
(mm) 

50 

40 

30 

20 

10 

‘0 0.2 0.4 0.6 0.8 1.0 1.2 
DEFLECTION, W, (mm) 

Fig. 6. Tearing force, P ,  and flaw radius, a, versus maximum plate deflection. Ex- 
perimental data1’ for 3 mm and 5 mm Plexiglss sheets bonded to steel. 

^/a = p2/32r2D = (8Dw2,,,/a4) (5) 
This result indicates that if 7. is a material constant, the applied force to 
debond the disk would remain constant while the central deflection in- 
creased proportional to the square of the disk radius. As is seen in Figure 
6, reproduced from their work, there is a substantial portion of the deflec- 
tion over which the applied force does remain constant. They point out 
that the best correlation would be expected if the deflection is smaller than 
the disk thickness due to limitations of the basic plate theory. This 
method for determining the adhesive energy ys seems very attractive and 
reasonably simple to obtain. It furthermore has the advantage, in contrast 
to the use of beamlike specimens, that bonding control need only be at- 
tained at  the initial fracture front because there are no “sides” to a circular 
disk specimen as there are when bonding two beam strips together. 

With the thought that improved sensitivity could be obtained using this 
same specimen but with pressurization rather than point loading, plus the 
fact that there results a smaller maximum deflection for the same total load, 
W. B. Jones has conducted some experiments using a glass-rubber combina- 
tion.24 Using Y = 1/2 for the Poisson’s ratio of the rubber, one expects 

7. = 9p2a4/128Ehs = l/z pw,, = (32Eh8/9a4)wmnX2 (6) 
It may also be noted that, in contrast to the concentrated loading, there is 
no necessity for the hole through which the load is introduced to remain 
concentric with the debonding disk for the analytic result to apply. In this 
respect the pressure loading is also experimentally simpler, although the 
fracture once started will be unstable while the concentrated load configura- 
tion is neutrally stable. 

Description of Test Results 
The test vehicle for the surface energy-bond testa consisted of a glass disk 

having a central hole and a thin sheet of polyurethane rubber cast-bond to it. 
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The glass disk was of lens quality crown glass, 3.8 in. in diameter and 9.128 
in. thick. A brass pressure fitting was bonded to the plate. Through it 
pressure was introduced, thereby causing progressive debonding (Fig. 7). 
Simultaneous measurements were made of the diameter of the debonded 
area and the imposed pressure. 

The disk was prepared for casting the polyurethane by first wiping with 
commercial grade acetone, then with chloroform. A metal pin was then 
wiped with silicone vacuum grease and inserted into the hole through the 
brass fitting so that the end was flush with the top surface of the disk. A 
circular area about '/z in.-diameter was then thinly covered with vacuum 
grease to initiate unbonding. The assembly was then placed in the oven 
to preheat before casting. 

The polyurethane rubber was made of equal volumes of Solithane 113 
(a commercial polyurethane rubber available from the Thiokol Chemical 
Corporation) and castor oil. The components were preheated to 140°F 
and mixed. The mixture was degassed in a vacuum for about 10 min, then 
poured to desired thickness on the glass disks. The rubber was subse- 
quently cured for about 2 hr at  280°F. The oven was then cut off and 
allowed to cool with the samples inside. After about 2 hr, the samples were 
removed and readied for testing. A metal wire was pushed through the 
hole to clear the flashing and to initiate unbond. The samples were at- 
tached to a regulated air supply. 

Procedures usually were to pressurize the sample so that debonding 
initiated and propagated beyond the edges of the brass fitting so that it 
could be more easily observed. On some tests, however, measurements 
were also taken near the center of the sample. The pressure was slowly 
increased until debonding initiated, then was slowly decreased until the 
flaw line stopped propagating. Pressure values from a mercury manometer 
were recorded as a function of the diameter of the debond. Some typical 
data are shown in Figure 8. 

In some tests crossed polaroids were used to enhance the contrast at  the 
edge of the unbond. 

Polyurethonr Rubber 
Yrmbrone 7 

Brow Filling 

x i  L 
Flrxiblr Tubing 

Fig. 7. Sketch of disk teat specimen.24 
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DIAMETER (INCHES), za 
Fig. 8. Typical pressure p vs. diameter 2a data for the pressurized disk. E = 400 psi, 

h = 0.043 in., giving 7. = 1.4 in.-lb/in.z [eq. (S)]. 

Application to Complicated Geometries 
With the foregoing reasonable results obtained from simple experiments 

it appears possible to utilize the known value of the adhesive energy in in- 
vestigating adhesive failure in more complicated geometries. As an il- 
lustration, a rather sophisticated numerical analysis was used to obtain 
the unbonding threshold for a hollow thick-walled cylinder of polyurethane 
rubber cast into a glass tube and subjected to a temperature drop.' 

The thermal stresses in the cylinder were computed numerically, normal- 
ized upon EaAT, and the strain energy integrated over the cylinder. Then 
assuming only one new free surface was created as the crack progressed 
along the interface, the change of potential energy V with crack length I was 
equated for rigid boundary displacements to the change in energy to form 
new surface, i.e. 

277 [EaATl26V(o~1)/6111=z,, = 277br. 
u = const. 

leading, a t  criticality, to 

where I [ ( l / b )2 ]  is the nondimensional energy. This result for the special 
geometry computed is given in Figure 9. 

Note first that 
for small debonding lengths, the basic variation is consistent with the usual 
Grif€ith inverse dependence upon crack length, and qualitatively that a 
lower temperature difference is required to propagate a larger crack than a 
smaller one. On the other hand, note that for l/b?0.17 the functional 
dependence upon the fracture length is reversed, namely that an increasing 
temperature is required to make a crack longer. The key to this behavior 
predicted by the numerical analysis is found in evaluating the rate of energy 
release with respect to crack length. For the shorter values of lor, the strain 

The implications of this result appear rather interesting. 
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I i t  
I 

I I 
0 0.2 0.4 0.6 0.8 

I / b  
Fig. 9. Critical temperature differential as function of crack length.' 

energy being released is so great that i t  cannot be completely absorbed by 
the creation of new surface, and crack instability results, as in the Griffith 
centrally cracked sheet. On the other hand, due to the three-dimension- 
ality of the geometry and the existence of hoop stress, once the crack is 
sufficiently large, in this case Z/b=0.17, the energy release is just that to 
create the new surface-a stable growth proportional to the amount of 
driving force (temperature difference) present. 

One therefore predicts in an elastic medium that a small crack, once 
started propagating by a temperature difference greater than critical for that 
particular length, will extend or jump to its other stable position across the 
"well" in Figure 9, path ABC, and proceed toward D if the temperature 
difference is further increased. On the other hand, if the crack begins a t  a 
larger length, path A'B', as the temperature increases it will merely grow 
larger toward D, and grow in a stable fashion. 

It is thus seen that the debonding characteristics could be predicted, as 
well as the value A' for a critical stable crack length Z*/b by using the value 
of adhesive energy from Figure 8, although the assumed independence of 
+ya upon temperature should be verified. It is implicit, of course, that this 
fracture analysis also assumes tha same quality of bond in both the labora- 
tory test of the disk and the filled cylinder. While the example chosen has 
been deliberately more complicated than other typical engineering design 
problems, with, say, mechanical loading, the proposed analysis technique is 
thought to be direct and simple. 

Conclusions 
Notwithstanding the promising success in using the continuum mechanics 

approach to adhesives, it is well to emphasize some of the qualifications. 
* Portions of this research were supported by a grant from the National Aeronautics 

and Space Administration. 
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First, it is not necessary from the engineering standpoint that the adhesive 
and cohesive energy values be associated. It sufEces that they can be 
measured. To the extent that the bonding process in any design situation 
satisfactorily duplicates the process used in the specimen preparation, e.g., 
bond thickness, cure temperatures and pressures, and that the failure mode 
is the same, i.e., interfacial adhesive separation (or else cohesive failure 
analysis would be used), then a direct and reliable prediction can be made. 
Second, if subsequent experience proves the approach is practical, addi- 
tional analytical refinements can be made, either by way of numerical 
calculations in a given configuration, or additional analytical sophistication 
in the way of allowing for elastic deformations in both of the bonding com- 
ponents, or by introducing a third interlayer representing the adhesive 
coating itself. Third, from the chemical standpoint it should be interesting 
to inquire into the possible molecular associations of the cohesive and adhe- 
sive energy values, as well as the nonisotropic boundaries, or effects of 
adhesive migration into the base polymer. Finally, a serious attempt should 
be made to reduce the peel test data, by appropriate analysis, to a form from 
which the specific energy values can be extracted and thus increase its 
quantitative value by widening the range of application of peel test data. 
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